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1. I~TRODUCTION

The real interpolation method of Lions and Peetre for pairs of Banach
spaces can be extended easily to pairs of quasi-Banach spaces. [A space A
is said to be a quasi-Banach space if it has all the properties of a Banach space
with the exception of the triangle inequality which is replaced by the property:
There exists a positive constant c such that, for all a E A and all b E A,

'j a + b I' ~ c(, a " - : b :i).]

In contrast to this situation, the complex interpolation method of Calderon,
Lions, and Krejn depends heavily on the fact that the underlying spaces are
complex Banach spaces. As far as interpolation methods are concerned we
refer to [1,8]. Recently, Calderon and Torchinsky described a complex
interpolation method for spaces of Hardy type, which are quasi-Banach
spaces; cf. [3, n.3]. As a particular case, one obtains complex interpolation
of the usual Hardy spaces in the sense of Fefferman and Stein; cf. [4] (real­
variable characterization). In his unfortunately unpublished lecture notes [6]
Peetre proved a Littlewood-Paley theorem for the Hardy spaces in the sense
of Fefferman and Stein. A statement of this result and a new proof may be
found in [9, 3.~.1]. Using that assertion, the Calderon-Torchinsky result
mentioned above can be essentially reformulated as the complex inter­
polation of the two spaces C~P2) and L~,(12) of entire analytic functions of
exponential type, where 0 < Po < oc and 0 < Pt <- oc. A precise definition
of the spaces L"A(/q) with 0 < P < x; and 0 < q < 'lJ is given in Section 2,
Eq. (2). The aim of this paper is two fold. First (Section 2, Theorems 1 and 2),
we prove a complex interpolation theorem for two spaces L Ai) (/q ) and LAp (/q ),o 0 1 1

where 0 <:: Po < 00, 0 < qo < x, 0 < Pt < X" 0 < qt < x, and Po/qo =

Pt/qt . The additional assumption Po/qo = Pt/qt depends on our method. We
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conjecture that the resulb formulated in Theorems I and 2 are true II ithout
this additional assumption. (A proof of these generalized theorems can
perhaps be given by a combination of the method of Calderon and Torchinsky
[3, II, pp. 144-151] and our method.) Second (Section 3, Theorem 3), on the
basis of Theorem :2 we prove a Fourier multiplier theorem for the space~

LiJA(/,J. The formulation looks somewhat curious, but as we ~hall see in a
later paper [II], it is sharp in some sense,

\Ve hope that the results of this paper are of self-contained intere,t. On the
other hand. in [II] we intend to apply the results of this paper to the theory
of the spaces F;~.q of Hardy-Sobolev type that has been developed in [9].
Occasionally in [9] there are some awkward, unnatural looking restrictions
for s if P < I. With the help of the theorems proved in the present paper
(in particular Theorem 3) these restrictions can be removed and replaced by
natural conditions. Among other things, we shall be concerned in [It] with
equivalent quasi-norms in F;,.q in the sense of [10].

2. COl\IPLEX INTERPoLATlo:\ OF L/(lq)

The /I-dimensional real Euclidean space and its points are denoted by R,.
and x = (Xl , ... , x,,), respectively. S is the Schwartz space of all rapidly
decreasing infinitely differentiable complex-valued functions on R 7I , and S'
is the space of all complex-valued tempered distributions. (Because the
dimension /I is fixed once for all Ive omit R" and simply II rite S instead of
S(R,,), etc.) F is the Fourier transform on S', and F-l is the inverse Fourier
transform. We recall the famous Paley-Wiener-Schwartz theorem, which
states that IE S' is an entire analytic function of exponential type if FI has a
compact support. If

and if 0 < P <x and 0 < q < x, then

k = 0, 1,2, ... , (I)

O. I. 2., ...

If supp FI". C Dj: in the definition of LJlA(lq) is replaced by supp Fj" C Dk~l '
where again k = 0, 1,2, ... , then the corresponding space is denoted by
L:;4(!q) (the number 2 indicates that the balls D k +l are doubled in size in
comparison with D1J.

If 0 < Po < ex'. 0 < PI < XJ, 0 < qo < 'x, and 0 < ql < x, then
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F(L"p'A(!q), L"J';'(Iq) denotes the space of all systems 1= Uk(X, z)}t-o ofo 0 1 1 -

functions with the following properties:

(i) If k ~ 0, 1,2,... , then Ik(X, z) is defined for x EO R" and complex ::
with 0 ~ Re:: .c:.. 1. It is a bounded and continuous funtcion in R" x
{z O~;; Re:: < I). If x E R" is fixed, then/k(x, z) is analytic in 0 < Re z < 1.

(ii) If:: with 0 ~ Re:: < I is fixed, then Ik(X, z) is an entire analytic
function and

supp(Flk)('. ::) C D"-l . k = 0, 1,2,.... (3)

(iii) If . LJJ(lq)l! has the same meaning as in (2), then

= max sup lif(', I - itm~o Lp,(/q,) < 'x!.
I~O,I IER,

(4)

The set of all systemsl = {lk(X, z)}t~o satisfying only the above properties
(i) and (ii) is denoted by M2A.

Remark I. This is the counterpart of the well-known construction
introduced by Calderon in [2] in the case of Banach spaces. A description
may also be found in [8. p. 56].

PROPOSITIO:\ 1. (i) /f0 < p < ex; and 0 < q < 00 then L"A(lq) equipped
with the quasi-norm (2) is a quasi-Banach space (Banach space if I ~ p and
I ~ q).

(ii) Equation (4) is a quasi-norm. F(L2pA(lq ), L2pA(!q » equipped with this
o 0 1 1

quasi-norm is a quasi-Banach space (Banach space if Po, PI' C/o' and qi are
larger than or equal to I).

Proof Step I. We prove (ii). All the required properties are clear with the
exception of CI:) If 'f . F(L~~(Iqo)' L~;(!q)1 = 0, then Ik(X, ::) = 0 for k =

0, 1,2, ... and «(3) F(L2)~(!a ), L2pA(!q » is complete. In order to prove (C\) we
o -0 1 1

recall the well-known formula

log.f,.(x,z) ~ 1'''' log filx.it)ifLo(Rez.t)dt
---::J

(5)

+ 1'''' log: tilx, 1 ~ if): fLI(Re z. t) cit.
o.' __ '1-

Here x E R" . °<: Re z <: I and k = 0, I, 2.....
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Furthermore, fLu(8, f) and fL,(8, t) are positive kernels with

I . , I .'
r-=7f L~ fLo(8, f) df ~'. eJ_I fL,(8, f) dt = I. (6)

cf., e.g., [8, pp. 65, 67]. After multiplication of (5) with 0 . r ", x. it
follows in the same way as in [8, p. 67] that

I .d I H

I~(x.z)r < I~.I_, it~.(x.itWfLoWf)dfl

(7)

with 8 = Re z. Now, (LX) is a consequence of (7). (The number r will be
useful later on.) We prove the co~pleteness of F(L;'~(lqo)' L~~(I~I))' It}"· =

:Jk"'(X, zm'~o' where m = I, 2, ... IS a fundamental sequence In F( L~~(lq/
[~~(lq,)), then r(·. z), with z = if or :: = 1 ..;.. if, respectively. f real.
converges in the quasi-norm . [J,,(/q)! (cf. (2)), where 1 O. L to the
limit elementl = {fl,:(x, zm~o . In order to prove that the definition of.!,,(x, ::)
can be extended in a natural way to all z with 0 ~ Re:: ,~ I. and that the
functions so defined have the required additional properties. we use the
following Plancherel-Polya-Nikol'skij inequality: cf. [7. p. 37]. If k with
k = 0, 1,2.... is fixed, then there exists a constant CI,: such that for all f with
fER, and all m c. L 1.. '"

sup, I;.'" (x, it)
J'ERn

,1'i'll

I" "'( 'f) /'0 d l.II,: X, I' X (~)

A similar result holds for 1I,:'''(x. 1 - if), where Po must be replaced by PI .

Here we used (3) essentially. By (7) with N" instead of Ik' (8) and a limit
argument, it follows that II,:(x, z) can be defined in a natural way for all
x E R II and all z with 0 ~ Re z ~ I, and that these functions have the
required additional properties.

Sfep 2. The proof of (i) follows by standard arguments from a
Plancherel-Polya-Nikol'skij inequality of type (8).

DEFINITION. If 0 < 8 < L 0 < Po < 00, 0 < p, < 'XJ. 0·" qu <0 X".

and 0 < q, < x, then [L~Pqo)' L;,(Iq')]o is the set of all systemsf c {f1,:(Xj}['dl
of functions for which there exists a system

(I --! (. _)1" F [2.4(1 ) [2.4(1 »,~ - I g k .X. ~ I k=O E ( Po 00· ]Jl QI

with II,:(x) = g,,(x, 8) and

supp(Fgl,:)(', 8) C D k : k = O. 1,1,00 .. (9)
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(10)

where the infimum is taken over all admissible systems g.

Remark 2. This is the counterpart of the usual definition of complex
interpolation in Banach spaces; cf. [2] or [8, p. 58]. If

r (. ~)1 x c:: F(L2A(1 ) L2A(1 »l g k .\, ~ J 1.'=0 '-- Po qo' PI Ql '

then the support of (Fgk)(x, B) (where B is a fixed number) is contained in
D k + 1 by definition; cf. (3). In other words, (9) strengthens this hypothesis.

PROPOSITION 2. rep (lq ), L 1'
4 (lq )]0 is a quasi-Banach space. Furthermore,

o 0 1 1

= inf(sup: {gl', it)}1 Lp}lq,)' )'-0 (sup I'{gk, I ~ itl: Ll',(Iq,)li)O (10*)
f!SRI fERl

is an equivalent quasi-norm. where the infinum is taken over all admissible
systems g.

Proof [t follows by an inequality of type (8) and standard arguments that
[L;'Pqo)' L;,pq,)]e is a quasi-Banach space. We prove (10*) is an equivalent
quasi-norm. Obviously, the quasi-norm in (10*) can be estimated from above
by the quasi-norm in (10). In order to prove the reversion we replace the
system g = {glx,z)}1==o in (10) by {aZ-Oglx,.:)}j::,o, where a is a positive
number. By (4) we have

, l,[L1,pq,,), L1,pq,)]o I!

<;; a-O sup If glx, it)]l LpJlqol - al-Osup ,{ gj(x, 1 + it») L"Pq,)!I.
fER, fER,

If one chooses a in an appropriate way (such that the two summands on the
right-hand side are equal), and if afterwards one takes the infimum with
respect to g, then the right-hand side of the last formula can be estimated
from above by the quasi-norm in (10*). Hence, the quasi-norms in (10)
and (10*) are equivalent.

THEOREM I. If 0 < B < I. 0 < Po < OC, 0 < PI < x:" 0 < qo < 00,

o < ql < ,x and Po!qo = PI;'q, , then

(II)
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where

I - (1

fill

[I
and

(/

I-IJ IJ

qt

(equimlent quasi-llorms).

Proof Step I. (I n this step the additional assumption fioqo -~ fil,ql is
not needed.) Let:, g".(x, Z"):{:~I) E F(L~;:(loo)' L;;~(lq)) with (9). By (7) with
gl;(X, :-) instead of F(x.:-) and °< r < min( PI), PI' qo ,ql)' it follows by
Holder's inequality that

.:;; (sup {gd', in.: L /10(100) ,H)(SUp :LRI,(·' I --:- it): L vJlq) IJ)
t t

Hence (with topological imbedding)

[L;~.uqo)' L;~Jlql)]e C LJ<A(/q). ( 12)

Step 2. rn order to prove the reversion to (12) we may restrict ourselves
to systemsf· ~h1j~o C S with supp Ff,.. CD" for k = 0, L 2..... where only
a finite number of the functions /; does not vanish identically. This set is
dense in LI'A(lq) because the set [h hE S. supp F/z C D,,1 is dense in

jH HE 5', supp FH CD", U~,. H(x) I' dx) I "., x(:

cf. [7, p. 40]. Again k = 0, I, 2, .... Let f be such a system. We introduce
the maximal functions

IIa' .~--­
min(p, q)

( 13)

cf. [9,2.2.3, formula (6)]. Again k C~ 0, I. 2..... Let <p(x) E 5 with

!jJk(X) = I if x ':- I and supp fF C : r: r .. ' ,I
. - -t_ ( 14)
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and epk(X) = ep(2-kx). If ;:; is a complex number with °~ Re z ~ 1 and
j = 0, 1,2,... , then we put

Here band d are real numbers which will be chosen later on. I; . I Lp(/q)1

has the same meaning as in (2). Iff does not vanish identically, thenft(x) > 0
for all x E R" . Hence, the construction in (I5) is correct, and the funtcion
in the brackets ( ) belongs to L 1 • Hence, (I5) can be rewritten as

gJCx, z) = iUt} Lu(lq}idlz-Ol J (F-lepj)(y)jj(x - Y):.ft(.y - y),blZ-OI dy.
R" (16)

In order to show that the system g = ~ gJCx. ;:;)Jj~o belongs to F(L;~(lqo)'

L2
p
A(lq », we estimate the quasi-norm (4). The other required properties for
1 1

the functions gj(x, z) are clear by construction. We have

where c is a positive number which is independent of .Y, Y, and j. Using
(F-lep;)( y) = 2in(F-lq:)(2;y) and the above estimate. ([6) then yields

x r 2;1/ :(F-l<p)(2 Jy),(I - i 2i y ")1. blRez-OI ((I"
• R,

Here c and c' are independent of j. We have

(I 7)

[ [[ [,
-- - - = 0 (- - -I
qo q , qo ql '

and I I (' [ I '
-- - - = ([ - 0) - - -) .
q, q , ql qo

(I8)

If we choose b = q( [;'qj - I/qo) then

and
q

I - b(1 - 0) = --.
ql

(I9)

If ;:; = it in (I7). where t is a real number. then

and

(20)
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Similarly one obtains that
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We have Po!qo = Pli'ql = piq. If we choose d = ~b, then (19) yields

L - de ,= L .~ d( I - e) '" I.
Po PI

So by (20) and (21) we have

(21 )

(22)

By the maximal inequality proved in [9, 2.2.3, formula (15)], the right-hand
side of (22) can be estimated from above by'rf,:~ , LAlq ) " Therefore

where c is independent off Furthermore,

(23)

g;(x, e) =r;(x) if j = 0, L 2,. ... (24)

Hence, (23), (24), Proposition 2, and the above-mentioned density of the
chosen systems f in LpA(lq) prove the reversion to (12). The proof is now
complete.

Remark 3. On the basis of Peetre's Little\vood-Paley theorem for Hardy
spaces mentioned in the Introduction, the complex interpolation theorem
for the Hardy spaces proved by Calderon and Torchinsky [3, II.3] can be
reformulated as follows. rf 0 <: Po < x, 0 < PI < x, 0 < g < Land
Ij} = (I - B),pu -'- e:Pl , then

(25)

The method in [3] is different (although maximal inequalities are used also).
Perhaps a combination of the above proof and the Calderon-Torchinsky
method yields a proof of Theorem 1 without the additional restriction
fJo/qo = Pl/ql' Finally we remark that the balls D" in the definition of
L l'A(lq) can be also replaced by some other sets.

Next we want to prove the so-called interpolation property for linear and
bounded mappings. Let T be a linear mapping from S' :< S'/ ... into itself,
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i.e., iff = {jj)j~u C S', then Tf = {(7J)j}j~o C S' is a linear operator. T is said
to be of convolution type if

supp F[( Tn] C supp Ffj , .i = 0, I, 2, .... (26)

A typical example (which will be of interest later on) is given by

(Tj)j (x) = F-I[q:ff;] = r (F-Iq:j)(X - y)fj(y) dy, (27)
.. Rn

where q:j are given appropriate functions. (We assume that the expressions in
(27) are meaningful.) If A is a subset of S' >~ S' x .... then we shall say
"T is a ... mapping from A into... " instead of the more correct version
"the restriction of T to A is a ...mapping from A into ... ," etc. [f T is a linear
and bounded operator from a Banach space A into itself. then: T ,i has the
usual meaning. The definition or:: T I' works also if A is a quasi-Banach space.
[n that case I TI is a quasi-norm. Finally we say that the above operator T
preserves M2A if TfE M2A for any system fE M2A (the definition of Jf2A
precedes Remark I). Here z appearing in the definition of M2A must be
considered as a parameter.

THEOREM 2. Let 0 < Po < 'XJ,O < PI < x-',O < qo < 7:;,0 <. qi < W,

and Po!qo = Pi/qi . Let T be an M2A-presefTing linear and bounded mapping of
concalution type from L2pA(lq) into itself, where I = 0, I. with the quasi-norm

I l

, Til' If0 :s:: 8 ,:;:; I, then T is a linear and bounded mappingfrom L"A(/q) into
itself; where

I

P

1-8 8
Po PI

1
q

1 - 8 8
(28)

with the quasi-norm :1 T I, which can be estimated by

: T i ~ c ! T: ~-e T:~.

Here c is a positive number which is independent of T.

Proof If 8 = 0 or 8 = I, then the assertion of the theorem is obvious
because T is a mapping of convolution type. Let 0 < e .<: I. Letf = {f;1j::o E

LJ)A(lq), and let g = ; glx, z)}%o be a corresponding admissible system in
the sense of Theorem I and the above definition. We want to show that
Tg(x,':) = n gk, =)}i::o is an admissible system for Tf, in particular

(Tg)(x, 8) = Tf (30)

Here.: with 0 ~ Re z ".:;; I is a parameter. The counterparts of (4) and (9)
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follow from the hypotheses. The other required properties are clear because T
preserves .\f~A. Hence, by the above definition

(31 )

We now use Proposition 2. If we restrict the infimum in (10*) to the above
system Tg. then

Theorem I and Proposition 2 finally yield the desired assertion.

EXAMPLE. T must satisfy two additional conditions: it must preserve
M2A and be a mapping of convolution type. Let T be given by (27), where we
may restrict ourselves to systems f =:f,"}['~o C S' satisfying (3). ln that case
it is easy to see that T preserves .H~A, and is a mapping of convolution type
if F-1rrJELl for.i = 0, I. 2,.... We recall the well-known fact that rr j E W~'

with K > n/2 implies F-ICf'j E L 1 ; cf., e.g., [7, p. 60]. Here W 2
K is the usual

Sobolev-Slobodeckij (or Bessel-potential) space. Therefore T satisfies the
required additional properties if T is given by (27) and

rpJ E JV/, K > n:2, where .i ~ O. I. 2..... (32)

3. FOURIER MULTIPLIERS FOR L/{lq)

First we recall t\\ 0 Fourier multiplier theorems.

(i) lf 1 <: p <: x and I <: q < x, then there exists a positive number
c such that for all systems [fkrt~u C L" and all systems ~ <f-'I}~O one has

i:F-l[Cp"Ff,J} L,llq)

<;; c ,U;,} L]!(lq): ~~~ R!>!-n:2 U~12~11.'<2R tu I(D'CPl)(f)!~ dgf~·
Oo::.",:~ ~ L-[1l,2~

Here ; . : LiIQ): has the same meaning as in (2). This is a theorem of the
Hormander type. A proof may be found in [8. pp. 161-165] (in particular
Remark 2 on p. 165). Of course, the only systems of interest are :/;,.: and: 'f I:.
for which the two factors on the right-hand side of (33) are finite. Another
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Fourier multiplier theorem for Lilq) with I < P < Jj and I < q < ,x;

may be found in [5, p. 241]. Obviously, in the theorem below one can replace
the term related to the right-hand side of (33) by the corresponding term in
Lizorkin's multiplier theorem.

(ii) If 0 < P < x,O < q < oc and K > ni2 -:.-. n/min(p, q) then there
exists a positive number c such that for all systems {fk}t~o E L],A(lq) and all
systems {q;/}~o of infinitely differentiable functions in R"

,{F-I[<PkFji.]) 1 Lp(fqY;

<;; c :{f~,] 1 Lp(lq ):' sup ,I ff/(2',) W~'"
1~0,1, ....

(34)

Here W2' are the usual Sobolev-Slobodeckij or Bessel-potential spaces.
A proof may be found in [9,2.2.3].

THEOREM 3. Let I <Po < 00, 1< qo < 00, 0 <PI < "XJ, 0 < qj < OC,

Po/qo = Ptlql, and K > nl2 -L nlmin(p, q). /fO ~ e :s:; I and

I

P

I - e e
Po PI

I
q

1- e e

then there exists a positive number c such that for all systems {fdt~o E LJ,A(fq)
and all systems {<P/}f~o of infinite~J' differentiable functions in R"

:x: (

< c IiUk] 1 Lp{lq)ll X (sup II q;1(21 .) W~K 11 )0
I

Slip R;a;-n/2 (' r f (D'<Pl)(~) 2 d~t2)I-B.
R>O 'R/2<~1C;;2R/~o

0< >,,'(-[n:2]

(35)

Proof We want to apply Theorem 2. First we remark that one can
replace L],A(fq) in the above multiplier theorem (ii) by L~A(lq). The operator T
has the form (27), in particular (26) is satisfied. The example at the end of
Section 2 is applicable. Now (35) follows from (29), (33). and (34). The proof
is complete.

Remark 4. This theorem is the main goal of the present paper. It looks
a little artificial. However, in a later paper we shall apply this theorem to the
theory of equivalent quasi-norms for the Hardy-Sobolev spaces as it has
been developed in [9, 10]. Then we shall obtain sharp assertions which
show that (35) is also sharp in some sense (for details we refer to [II]).
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